Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Antimicrob Chemother ; 78(7): 1586-1598, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2316893

RESUMEN

BACKGROUND: The role of molnupiravir for coronavirus disease 2019 (COVID-19) treatment is unclear. METHODS: We conducted a systematic review until 1 November 2022 searching for randomized controlled trials (RCTs) involving COVID-19 patients comparing molnupiravir [±standard of care (SoC)] versus SoC and/or placebo. Data were pooled in random-effects meta-analyses. Certainty of evidence was assessed according to the Grading of Recommendations, Assessment, Development and Evaluations approach. RESULTS: Nine RCTs were identified, eight investigated outpatients (29 254 participants) and one inpatients (304 participants). Compared with placebo/SoC, molnupiravir does not reduce mortality [risk ratio (RR) 0.27, 95% CI 0.07-1.02, high-certainty evidence] and probably does not reduce the risk for 'hospitalization or death' (RR 0.81, 95% CI 0.55-1.20, moderate-certainty evidence) by Day 28 in COVID-19 outpatients. We are uncertain whether molnupiravir increases symptom resolution by Day 14 (RR 1.20, 95% CI 1.02-1.41, very-low-certainty evidence) but it may make no difference by Day 28 (RR 1.05, 95% CI 0.92-1.19, low-certainty evidence). In inpatients, molnupiravir may increase mortality by Day 28 compared with placebo (RR 3.78, 95% CI 0.50-28.82, low-certainty evidence). There is little to no difference in serious adverse and adverse events during the study period in COVID-19 inpatients/outpatients treated with molnupiravir compared with placebo/SoC (moderate- to high-certainty evidence). CONCLUSIONS: In a predominantly immunized population of COVID-19 outpatients, molnupiravir has no effect on mortality, probably none on 'hospitalization or death' and effects on symptom resolution are uncertain. Molnupiravir was safe during the study period in outpatients although a potential increase in inpatient mortality requires careful monitoring in ongoing clinical research. Our analysis does not support routine use of molnupiravir for COVID-19 treatment in immunocompetent individuals.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2
2.
HIV Med ; 24(7): 785-793, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-2270560

RESUMEN

OBJECTIVES: Our objective was to assess immune responses and their influencing factors in people living with HIV after messenger RNA (mRNA)-based COVID-19 booster vaccination (third dose). METHODS: This was a retrospective cohort study of people living with HIV who received booster vaccination with BNT-162b2 or mRNA-1273 between October 2021 and January 2022. We assessed anti-spike receptor-binding domain (RBD) immunoglobulin G (IgG), virus neutralizing activity (VNA) titres reported as 100% inhibitory dilution (ID100 ), and T-cell response (using interferon-gamma-release-assay [IGRA]) at baseline and quarterly follow-up visits. Patients with reported COVID-19 during follow-up were excluded. Predictors of serological immune response were analyzed using multivariate regression models. RESULTS: Of 84 people living with HIV who received an mRNA-based booster vaccination, 76 were eligible for analysis. Participants were on effective antiretroviral therapy (ART) and had a median of 670 CD4+ cells/µL (interquartile range [IQR] 540-850). Following booster vaccination, median anti-spike RBD IgG increased by 705.2 binding antibody units per millilitre (BAU/mL) and median VNA titres increased by 1000 ID100 at the follow-up assessment (median 13 weeks later). Multivariate regression revealed that time since second vaccination was a predictor of stronger serological responses (p < 0.0001). No association was found for other factors, including CD4+ status, choice of mRNA vaccine, or concomitant influenza vaccination. In total, 45 patients (59%) had a reactive baseline IGRA, of whom two lost reactivity during follow-up. Of 31 patients (41%) with non-reactive baseline IGRA, 17 (55%) converted to reactive and seven (23%) remained unchanged following booster vaccination. CONCLUSIONS: People living with HIV with ≥500 CD4+ cells/µL showed favourable immune responses to mRNA-based COVID-19 booster vaccination. A longer time (up to 29 weeks) since second vaccination was associated with higher serological responses, whereas choice of mRNA vaccine or concomitant influenza vaccination had no impact.


Asunto(s)
COVID-19 , Infecciones por VIH , Gripe Humana , Humanos , Estudios Retrospectivos , COVID-19/prevención & control , Vacunación , ARN Mensajero , Inmunidad , Inmunoglobulina G , Anticuerpos Antivirales
3.
Dtsch Arztebl Int ; 119(19): 342-349, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2002483

RESUMEN

BACKGROUND: One of the purposes of outpatient treatment for COVID-19 patients is to prevent severe disease courses and hospitalization. There is a need for evidence-based recommendations to be applied in primary care and specialized outpatient settings. METHODS: This guideline was developed on the basis of publications that were retrieved by a systematic search for randomized controlled trials in the Cochrane COVID-19 trial registry. The quality of evidence was assessed with GRADE, and structured consensus generation was carried out with MAGICapp. RESULTS: Unvaccinated COVID-19 outpatients with at least one risk factor for a severe disease course may be treated in the early phase of the disease with sotrovimab, remdesivir, or nirmatrelvir/ritonavir. Molnupiravir may also be used for such patients if no other clinically appropriate treatment options are available. Immunosuppressed persons with COVID-19 who are at high risk, and whose response to vaccination is expected to be reduced, ought to be treated with sotrovimab. It should be noted, however, that the clinical efficacy of sotrovimab against infections with the omicron subtype BA.2 is uncertain at the currently used dose, as the drug has displayed reduced activity against this subtype in vitro. COVID-19 patients at risk of a severe course may be offered budesonide inhalation, according to an off-label recommendation of the German College of General Practitioners and Family Physicians (other medical societies do not recommend either for or against this treatment). Thrombo - embolism prophylaxis with low-molecular-weight heparin may be given to elderly patients or those with a pre-existing illness. No recommendation is made concerning fluvoxamine or colchicine. Acetylsalicylic acid, azithromycin, ivermectin, systemic steroids, and vitamin D should not be used for the outpatient treatment of COVID-19. CONCLUSION: Drug treatment is now available for outpatients with COVID-19 in the early phase. Nearly all of the relevant trials have been conducted in unvaccinated subjects; this needs to be kept in mind in patient selection.


Asunto(s)
Atención Ambulatoria , Tratamiento Farmacológico de COVID-19 , Guías de Práctica Clínica como Asunto , Anciano , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Revisiones Sistemáticas como Asunto , Resultado del Tratamiento
4.
Sci Rep ; 12(1): 9622, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1947488

RESUMEN

This network meta-analysis (NMA) assessed the efficacy of remdesivir in hospitalized patients with COVID-19 requiring supplemental oxygen. Randomized controlled trials of hospitalized patients with COVID-19, where patients were receiving supplemental oxygen at baseline and at least one arm received treatment with remdesivir, were identified. Outcomes included mortality, recovery, and no longer requiring supplemental oxygen. NMAs were performed for low-flow oxygen (LFO2); high-flow oxygen (HFO2), including NIV (non-invasive ventilation); or oxygen at any flow (AnyO2) at early (day 14/15) and late (day 28/29) time points. Six studies were included (N = 5245 patients) in the NMA. Remdesivir lowered early and late mortality among AnyO2 patients (risk ratio (RR) 0.52, 95% credible interval (CrI) 0.34-0.79; RR 0.81, 95%CrI 0.69-0.95) and LFO2 patients (RR 0.21, 95%CrI 0.09-0.46; RR 0.24, 95%CrI 0.11-0.48); no improvement was observed among HFO2 patients. Improved early and late recovery was observed among LFO2 patients (RR 1.22, 95%CrI 1.09-1.38; RR 1.17, 95%CrI 1.09-1.28). Remdesivir also lowered the requirement for oxygen support among all patient subgroups. Among hospitalized patients with COVID-19 requiring supplemental oxygen at baseline, use of remdesivir compared to best supportive care is likely to improve the risk of mortality, recovery and need for oxygen support in AnyO2 and LFO2 patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/uso terapéutico , Humanos , Oxígeno/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
5.
EMBO Mol Med ; 14(8): e15888, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1918174

RESUMEN

Durable cell-mediated immune responses require efficient innate immune signaling and the release of pro-inflammatory cytokines. How precisely mRNA vaccines trigger innate immune cells for shaping antigen specific adaptive immunity remains unknown. Here, we show that SARS-CoV-2 mRNA vaccination primes human monocyte-derived macrophages for activation of the NLRP3 inflammasome. Spike protein exposed macrophages undergo NLRP3-driven pyroptotic cell death and subsequently secrete mature interleukin-1ß. These effects depend on activation of spleen tyrosine kinase (SYK) coupled to C-type lectin receptors. Using autologous cocultures, we show that SYK and NLRP3 orchestrate macrophage-driven activation of effector memory T cells. Furthermore, vaccination-induced macrophage priming can be enhanced with repetitive antigen exposure providing a rationale for prime-boost concepts to augment innate immune signaling in SARS-CoV-2 vaccination. Collectively, these findings identify SYK as a regulatory node capable of differentiating between primed and unprimed macrophages, which modulate spike protein-specific T cell responses.


Asunto(s)
COVID-19 , Proteína con Dominio Pirina 3 de la Familia NLR , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad Innata , Inflamasomas/metabolismo , Interleucina-1beta , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Tirosina Quinasas/metabolismo , ARN Mensajero/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Quinasa Syk , Vacunación
6.
Cochrane Database Syst Rev ; 6: CD014945, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1898513

RESUMEN

BACKGROUND: Monoclonal antibodies (mAbs) are laboratory-produced molecules derived from the B cells of an infected host. They are being investigated as potential prophylaxis to prevent coronavirus disease 2019 (COVID-19). OBJECTIVES: To assess the effects of SARS-CoV-2-neutralising mAbs, including mAb fragments, to prevent infection with SARS-CoV-2 causing COVID-19; and to maintain the currency of the evidence, using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, MEDLINE, Embase, and three other databases on 27 April 2022. We checked references, searched citations, and contacted study authors to identify additional studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that evaluated SARS-CoV-2-neutralising mAbs, including mAb fragments, alone or combined, versus an active comparator, placebo, or no intervention, for pre-exposure prophylaxis (PrEP) and postexposure prophylaxis (PEP) of COVID-19. We excluded studies of SARS-CoV-2-neutralising mAbs to treat COVID-19, as these are part of another review. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed search results, extracted data, and assessed risk of bias using Cochrane RoB 2. Prioritised outcomes were infection with SARS-CoV-2, development of clinical COVID-19 symptoms, all-cause mortality, admission to hospital, quality of life, adverse events (AEs), and serious adverse events (SAEs). We rated the certainty of evidence using GRADE. MAIN RESULTS: We included four RCTs of 9749 participants who were previously uninfected and unvaccinated at baseline. Median age was 42 to 76 years. Around 20% to 77.5% of participants in the PrEP studies and 35% to 100% in the PEP studies had at least one risk factor for severe COVID-19. At baseline, 72.8% to 82.2% were SARS-CoV-2 antibody seronegative. We identified four ongoing studies, and two studies awaiting classification. Pre-exposure prophylaxis Tixagevimab/cilgavimab versus placebo One study evaluated tixagevimab/cilgavimab versus placebo in participants exposed to SARS-CoV-2 wild-type, Alpha, Beta, and Delta variant. About 39.3% of participants were censored for efficacy due to unblinding and 13.8% due to vaccination. Within six months, tixagevimab/cilgavimab probably decreases infection with SARS-CoV-2 (risk ratio (RR) 0.45, 95% confidence interval (CI) 0.29 to 0.70; 4685 participants; moderate-certainty evidence), decreases development of clinical COVID-19 symptoms (RR 0.18, 95% CI 0.09 to 0.35; 5172 participants; high-certainty evidence), and may decrease admission to hospital (RR 0.03, 95% CI 0 to 0.59; 5197 participants; low-certainty evidence). Tixagevimab/cilgavimab may result in little to no difference on mortality within six months, all-grade AEs, and SAEs (low-certainty evidence). Quality of life was not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and Delta variant. About 36.5% of participants opted for SARS-CoV-2 vaccination and had a mean of 66.1 days between last dose of intervention and vaccination. Within six months, casirivimab/imdevimab may decrease infection with SARS-CoV-2 (RR 0.01, 95% CI 0 to 0.14; 825 seronegative participants; low-certainty evidence) and may decrease development of clinical COVID-19 symptoms (RR 0.02, 95% CI 0 to 0.27; 969 participants; low-certainty evidence). We are uncertain whether casirivimab/imdevimab affects mortality regardless of the SARS-CoV-2 antibody serostatus. Casirivimab/imdevimab may increase all-grade AEs slightly (RR 1.14, 95% CI 0.98 to 1.31; 969 participants; low-certainty evidence). The evidence is very uncertain about the effects on grade 3 to 4 AEs and SAEs within six months. Admission to hospital and quality of life were not reported. Postexposure prophylaxis Bamlanivimab versus placebo One study evaluated bamlanivimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type. Bamlanivimab probably decreases infection with SARS-CoV-2 versus placebo by day 29 (RR 0.76, 95% CI 0.59 to 0.98; 966 participants; moderate-certainty evidence), may result in little to no difference on all-cause mortality by day 60 (R 0.83, 95% CI 0.25 to 2.70; 966 participants; low-certainty evidence), may increase all-grade AEs by week eight (RR 1.12, 95% CI 0.86 to 1.46; 966 participants; low-certainty evidence), and may increase slightly SAEs (RR 1.46, 95% CI 0.73 to 2.91; 966 participants; low-certainty evidence). Development of clinical COVID-19 symptoms, admission to hospital within 30 days, and quality of life were not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and potentially, but less likely to Delta variant. Within 30 days, casirivimab/imdevimab decreases infection with SARS-CoV-2 (RR 0.34, 95% CI 0.23 to 0.48; 1505 participants; high-certainty evidence), development of clinical COVID-19 symptoms (broad-term definition) (RR 0.19, 95% CI 0.10 to 0.35; 1505 participants; high-certainty evidence), may result in little to no difference on mortality (RR 3.00, 95% CI 0.12 to 73.43; 1505 participants; low-certainty evidence), and may result in little to no difference in admission to hospital. Casirivimab/imdevimab may slightly decrease grade 3 to 4 AEs (RR 0.50, 95% CI 0.24 to 1.02; 2617 participants; low-certainty evidence), decreases all-grade AEs (RR 0.70, 95% CI 0.61 to 0.80; 2617 participants; high-certainty evidence), and may result in little to no difference on SAEs in participants regardless of SARS-CoV-2 antibody serostatus. Quality of life was not reported. AUTHORS' CONCLUSIONS: For PrEP, there is a decrease in development of clinical COVID-19 symptoms (high certainty), infection with SARS-CoV-2 (moderate certainty), and admission to hospital (low certainty) with tixagevimab/cilgavimab. There is low certainty of a decrease in infection with SARS-CoV-2, and development of clinical COVID-19 symptoms; and a higher rate for all-grade AEs with casirivimab/imdevimab. For PEP, there is moderate certainty of a decrease in infection with SARS-CoV-2 and low certainty for a higher rate for all-grade AEs with bamlanivimab. There is high certainty of a decrease in infection with SARS-CoV-2, development of clinical COVID-19 symptoms, and a higher rate for all-grade AEs with casirivimab/imdevimab.   Although there is high-to-moderate certainty evidence for some outcomes, it is insufficient to draw meaningful conclusions. These findings only apply to people unvaccinated against COVID-19. They are only applicable to the variants prevailing during the study and not other variants (e.g. Omicron). In vitro, tixagevimab/cilgavimab is effective against Omicron, but there are no clinical data. Bamlanivimab and casirivimab/imdevimab are ineffective against Omicron in vitro. Further studies are needed and publication of four ongoing studies may resolve the uncertainties.


Asunto(s)
Antineoplásicos Inmunológicos , COVID-19 , Adulto , Anciano , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , COVID-19/prevención & control , Humanos , Persona de Mediana Edad , SARS-CoV-2
8.
Infection ; 50(1): 93-106, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1661756

RESUMEN

PURPOSE: This executive summary of a national living guideline aims to provide rapid evidence based recommendations on the role of drug interventions in the treatment of hospitalized patients with COVID-19. METHODS: The guideline makes use of a systematic assessment and decision process using an evidence to decision framework (GRADE) as recommended standard WHO (2021). Recommendations are consented by an interdisciplinary panel. Evidence analysis and interpretation is supported by the CEOsys project providing extensive literature searches and living (meta-) analyses. For this executive summary, selected key recommendations on drug therapy are presented including the quality of the evidence and rationale for the level of recommendation. RESULTS: The guideline contains 11 key recommendations for COVID-19 drug therapy, eight of which are based on systematic review and/or meta-analysis, while three recommendations represent consensus expert opinion. Based on current evidence, the panel makes strong recommendations for corticosteroids (WHO scale 5-9) and prophylactic anticoagulation (all hospitalized patients with COVID-19) as standard of care. Intensified anticoagulation may be considered for patients with additional risk factors for venous thromboembolisms (VTE) and a low bleeding risk. The IL-6 antagonist tocilizumab may be added in case of high supplemental oxygen requirement and progressive disease (WHO scale 5-6). Treatment with nMABs may be considered for selected inpatients with an early SARS-CoV-2 infection that are not hospitalized for COVID-19. Convalescent plasma, azithromycin, ivermectin or vitamin D3 should not be used in COVID-19 routine care. CONCLUSION: For COVID-19 drug therapy, there are several options that are sufficiently supported by evidence. The living guidance will be updated as new evidence emerges.


Asunto(s)
COVID-19 , COVID-19/terapia , Hospitalización , Humanos , Inmunización Pasiva , Guías de Práctica Clínica como Asunto , SARS-CoV-2 , Sueroterapia para COVID-19
9.
Internist (Berl) ; 63(1): 118-128, 2022 Jan.
Artículo en Alemán | MEDLINE | ID: covidwho-1603180

RESUMEN

Antiviral drugs inhibit viral replication by interaction with specific elements of the viral replication cycle. Directly acting antiviral agents have revolutionized the therapeutic options for chronic infections with human immunodeficiency virus (HIV), hepatitis B virus (HBV) and hepatitis C virus (HCV). Pharmacological developments constantly improve therapeutic and prophylactic options for diseases caused by herpes viruses, which is of particular relevance for immunocompromised patients. While infections with persistent viruses, such as HIV, HBV or herpes viruses principally so far cannot be cured, complete elimination of viruses that cause acute infections is possible; however, acute infections, such as influenza or coronavirus disease 2019 (COVID-19) offer only a small therapeutic window for antiviral strategies due to their pathophysiological dynamics. The optimal time point for antiviral agents is immediately after exposure to the virus, which frequently limits its application in practice. An effective pre-exposure or postexposure prophylaxis has been established for infections with HIV and influenza A/B and also gains relevance for infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Asunto(s)
COVID-19 , Antivirales/uso terapéutico , Hepacivirus , Humanos , Infección Persistente , SARS-CoV-2
10.
Dtsch Arztebl Int ; 118(50): 865-871, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1594909

RESUMEN

BACKGROUND: The mortality of COVID-19 patients who are admitted to a hospital because of the disease remains high. The implementation of evidence-based treatments can improve the quality of care. METHODS: The new clinical practice guideline is based on publications retrieved by a systematic search in the Medline databases via PubMed and in the Cochrane COVID-19 trial registry, followed by a structured consensus process leading to the adoption of graded recommendations. RESULTS: Therapeutic anticoagulation can be considered in patients who do not require intensive care and have an elevated risk of thromboembolism (for example, those with D-dimer levels ≥ 2 mg/L). For patients in intensive care, therapeutic anticoagulation has no benefit. For patients with hypoxemic respiratory insufficiency, prone positioning and an early therapy attempt with CPAP/noninvasive ventilation (CPAP, continuous positive airway pressure) or high-flow oxygen therapy is recommended. Patients with IgG-seronegativity and, at most, low-flow oxygen should be treated with SARS-CoV-2-specific monoclonal antibodies (at present, casirivimab and imdevimab). Patients needing no more than low-flow oxygen should additionally be treated with janus kinase (JAK) inhibitors. All patients who need oxygen (low-flow, high-flow, noninvasive ventilation/CPAP, invasive ventilation) should be given systemic corticosteroids. Tocilizumab should be given to patients with a high oxygen requirement and progressively severe COVID-19 disease, but not in combination with JAK inhibitors. CONCLUSION: Noninvasive ventilation, high-flow oxygen therapy, prone positioning, and invasive ventilation are important elements of the treatment of hypoxemic patients with COVID-19. A reduction of mortality has been demonstrated for the administration of monoclonal antibodies, JAK inhibitors, corticosteroids, tocilizumab, and therapeutic anticoagulation to specific groups of patients.


Asunto(s)
COVID-19 , Anticuerpos Monoclonales Humanizados , Hospitales , Humanos , Guías de Práctica Clínica como Asunto , SARS-CoV-2
12.
EMBO Mol Med ; 13(8): e14150, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1271067

RESUMEN

Innate immunity triggers responsible for viral control or hyperinflammation in COVID-19 are largely unknown. Here we show that the SARS-CoV-2 spike protein (S-protein) primes inflammasome formation and release of mature interleukin-1ß (IL-1ß) in macrophages derived from COVID-19 patients but not in macrophages from healthy SARS-CoV-2 naïve individuals. Furthermore, longitudinal analyses reveal robust S-protein-driven inflammasome activation in macrophages isolated from convalescent COVID-19 patients, which correlates with distinct epigenetic and gene expression signatures suggesting innate immune memory after recovery from COVID-19. Importantly, we show that S-protein-driven IL-1ß secretion from patient-derived macrophages requires non-specific monocyte pre-activation in vivo to trigger NLRP3-inflammasome signaling. Our findings reveal that SARS-CoV-2 infection causes profound and long-lived reprogramming of macrophages resulting in augmented immunogenicity of the SARS-CoV-2 S-protein, a major vaccine antigen and potent driver of adaptive and innate immune signaling.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Inmunidad Innata , Inflamasomas , Interleucina-1beta , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , SARS-CoV-2
13.
Clin Microbiol Rev ; 34(1)2020 12 16.
Artículo en Inglés | MEDLINE | ID: covidwho-962931

RESUMEN

Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) pandemic. Remdesivir (GS-5734) is the first approved treatment for severe coronavirus disease 2019 (COVID-19). It is a novel nucleoside analog with a broad antiviral activity spectrum among RNA viruses, including ebolavirus (EBOV) and the respiratory pathogens Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2. First described in 2016, the drug was derived from an antiviral library of small molecules intended to target emerging pathogenic RNA viruses. In vivo, remdesivir showed therapeutic and prophylactic effects in animal models of EBOV, MERS-CoV, SARS-CoV, and SARS-CoV-2 infection. However, the substance failed in a clinical trial on ebolavirus disease (EVD), where it was inferior to investigational monoclonal antibodies in an interim analysis. As there was no placebo control in this study, no conclusions on its efficacy in EVD can be made. In contrast, data from a placebo-controlled trial show beneficial effects for patients with COVID-19. Remdesivir reduces the time to recovery of hospitalized patients who require supplemental oxygen and may have a positive impact on mortality outcomes while having a favorable safety profile. Although this is an important milestone in the fight against COVID-19, approval of this drug will not be sufficient to solve the public health issues caused by the ongoing pandemic. Further scientific efforts are needed to evaluate the full potential of nucleoside analogs as treatment or prophylaxis of viral respiratory infections and to develop effective antivirals that are orally bioavailable.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/farmacología , Alanina/farmacocinética , Alanina/farmacología , Antivirales/farmacocinética , Betacoronavirus/efectos de los fármacos , Betacoronavirus/crecimiento & desarrollo , Betacoronavirus/patogenicidad , COVID-19 , Ensayos Clínicos como Asunto , Ensayos de Uso Compasivo/métodos , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Esquema de Medicación , Ebolavirus/efectos de los fármacos , Ebolavirus/crecimiento & desarrollo , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/mortalidad , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/crecimiento & desarrollo , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Pandemias , Seguridad del Paciente , Neumonía Viral/mortalidad , Neumonía Viral/patología , Neumonía Viral/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/crecimiento & desarrollo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/mortalidad , Síndrome Respiratorio Agudo Grave/patología , Síndrome Respiratorio Agudo Grave/virología , Análisis de Supervivencia , Resultado del Tratamiento
16.
EMBO Mol Med ; 13(1): e13105, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: covidwho-814824

RESUMEN

The ongoing SARS-CoV-2 pandemic stresses the need for effective antiviral drugs that can quickly be applied in order to reduce morbidity, mortality, and ideally viral transmission. By repurposing of broadly active antiviral drugs and compounds that are known to inhibit viral replication of related viruses, several advances could be made in the development of treatment strategies against COVID-19. The nucleoside analog remdesivir, which is known for its potent in vitro activity against Ebolavirus and other RNA viruses, was recently shown to reduce the time to recovery in patients with severe COVID-19. It is to date the only approved antiviral for treating COVID-19. Here, we provide a mechanism and evidence-based comparative review of remdesivir and other repurposed drugs with proven in vitro activity against SARS-CoV-2.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/farmacología , Alanina/uso terapéutico , Amidas/farmacología , Amidas/uso terapéutico , Antivirales/farmacología , Benzamidinas , Reposicionamiento de Medicamentos/métodos , Ésteres/farmacología , Ésteres/uso terapéutico , Guanidinas/farmacología , Guanidinas/uso terapéutico , Guanina/farmacología , Guanina/uso terapéutico , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Lopinavir/farmacología , Lopinavir/uso terapéutico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Pirazinas/farmacología , Pirazinas/uso terapéutico , Ribavirina/farmacología , Ribavirina/uso terapéutico , Ritonavir/farmacología , Ritonavir/uso terapéutico , SARS-CoV-2/fisiología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA